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A KINEMATICALLY CONSISTENT TWO-POINT CORRELATION FUNCTION

J. R. RISTORCELLI*

Abstract. A simple kinematically consistent expression for the longitudinal two-point correlation func-

tion related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a

region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate

curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or

dissipation _, a quantity that is carried as part of a typical single-point turbulence closure simulation. Con-

structing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale

incorporates one of the fundamental quantities characterizing turbulence, E, into a model for the two-point

correlation function. The integral of the function also gives, as is required, an outer integral length scale

of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments;

the intention is to produce a practically applicable expression in terms of simple elementary functions -

that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point

turbulence closures. Using the expression devised an example of the asymptotic method by which functionals

of the two-point correlation can be evaluated is given.

Key words, two-point correlation hmctions, turbulence modeling, functionals
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1. Introduction. In single-point turbulence closures one is often in the position of needing to approx-

imate hmctionals - integrals of functions of the two-point correlation function Batchelor [1], Kraichnan

[2], mstorceni [3]. In aeroacoustical developments in which acoustic radiation due to turbulence is related

to the statistics of the turbulent source field one is in a similar position: the acoustic radiation is a function

of diverse two-point integrals, Proudman [4], mbner [5], Lillcy [6].

Batchelor [1], for example, in order to finish his development for the pressure variance in an isotopic

turbulence needed to evaluate the two funetionals I(f) -_ f x(f')_dx and I(f) = f x -1 (f')2dx. The function

f(x) is the two-point longitudinal correlation function. Lilley [6] in an investigation of noise radiated from

isotropic turbulence required an evaluation of I(f) = f xa(f')2dx. Proudman [4] in his statistical application

of Lighthill's acoustic analogy required approximations to integrals such as I ( f ) = f f (f" + 4x- 1f,, _ 4r- 2 f_].

Ristorcelli [3] in a treatment of weakly compressible turbulence required integrals of the form I(f) = f xfdx,

x / iiiand I (f) = f f (f f 4x-l f f" ÷ 8x-l f' f '- 4x-2 f f')dx. These functionals typically involve higher-order

derivatives of the two-point function. Practical estimates of these functionals are usually made by assuming

simple exponential or Gaussian behavior for the two-point correlation. It is argued that the functional is an

integral and therefore only nominally sensitive to form of the assumed two-point function. Unfortunately

this is not the case when the higher order derivatives appear in the fimctionals.

Given the practical need of evaluating these functionals a few attempts have been made to devise, in terms
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of elementaryfunctions,ausefulapproximationto thetwo-pointcorrelation.Severalexamplesofattempts
aregivenin Hinze[7],Frenkiel[8],[9],Townsend[10].Hinze[7]hasseveralamplificationsontheseissues.
Attemptshavealsobeenmadein spectralspace:oneassumesa spectralenergyfunction shape consistent

with a Kolmogorov spectrum and transforms to physical space to get the two-point correlation. One obtains

fractional Kn type Bessel functions that are consistent with the Kolmogorov inertial range scalings for

the structure functions, von Karman [11], and Sirovich, Smith and Yakhot [12]. Such developments are

focussed at reproducing the intermediate field scalings consistent with the ideal Kolmogorov spectrum: they

accurately capture the r 2/3 Kolmogorov inertial range result, Batchelor [15], Monin and Yaglom [16].

Our interest, however, is in non-ideal, anisotropic, strained, inhomogeneous, engineering turbulence for

which an inertial range with an ideal Kolmogorov scaling is unlikely. Such flows are typically computed with

single-point moment closures in which one parameterizes the turbulence in terms of the Reynolds stresses,

(vivj), and the dissipation, E. For calculations of such engineering problems, to which such a two parameter

characterization is applicable, the details of the spectrum are not relevant. Pertinent to this is the fact that

in physical flows the two-point function is notoriously insensitive to the flow type, Townsend [10], Frenkiel

[13], [14]. All that appears necessary is that the two-point correlation capture the integral and the dissipation

length scales. Associated with a characterization of the turbulence by (vivj), and ¢ are two important length

scales: the integral length scale, g, and the Taylor microscalc, A.

The Taylor microscale is the radius of curvature of the two-point correlation at the origin. The Taylor

microscale can be related to the viscosity and the dissipation. For a stationary turbulence the dissipation rate

is the spectral cascade rate. Thus constructing an expression for the two-point correlation whose curvature

at the origin is the Taylor microscale incorporates one of the fundamental quantities, the cascade rate,

characterizing turbulence into a model for the two-point correlation function.

The Taylor microscale is also related to the turbulent Reynolds number, Tennekes and Lumley [19], and

as consequence the Reynolds number dependence of the curvature at the origin is built into the expression

for the two-point correlation. Thus the functionals are no longer pure numbers but functions of the turbulent

Reynolds numbers, I = I(f(x ; Rt)), as one might expect. Any satisfactory approximation of the higher-

order derivatives in the vicinity of the origin, where they are large and a function of the turbulent Reynolds

number is crucial for any useful evaluation of such functionals. What is desired is a simple analytical

expression that will be a good approximation for the two-point correlation and its higher derivatives. It

must also be analytically tractable in terms of elementary functions so that functionals as complicated as

those given above can be evaluated. Several attempts at such an empirical function arc known: Frenkiel

[8], Townsend [10], von garman [11], Hinze [7]. None of these attempts satisfy the requirements that allow

application to situations described in Ristorcelli [3], Ribner [5] Proudman [4], Lilley [6] in which the behavior

to the two-point correlation near the origin is necessary.

The purpose of this note is to 1) develop a kinematically appropriate form of a two-point correlation

function, 2) that incorporates the effect of the turbulent Reynolds number and 3) that is analytically tractable

in terms of elementary functions. This is accomplished in the following sequence: In §2 the properties of the

two-point correlation are reviewed. Relationships from statistical fluid mechanics indicating the dependence

of the function on the Reynolds number and dissipation are summarized. The problem is recognized as a

two-length scale problem. In as much as there is a large disparity in the two length scales the problem is

further recognized as one in which there exists a small parameter. Given the existence of a small parameter a

form of the two-point correlation satisfying all the properties delineated in §2 is proposed and investigated in

§3. In §3 the boundary layer nature of the problem is used to produce a relationship between the parameters



thatyieldsaviscosityindependentfirstintegral.Thedetailsofthecalculationsareprovidedasanexample
oftheasymptoticmethodofevaluatingsimilarfunctionals.

2. Mathematicaland observedproperties, Thediversekinematicandobservedpropertiesof the
two-pointcorrelationarenowgiven.Therelationshipbetweencurvatureat theorigin,Taylormicroscale,
dissipation,andReynoldsnumberissummarized.Thedefinitionforthecorrelationfunctionisobtainedfrom

2k
< v_(z)vj(x -t- r) >=< viv_ >= -_I_j(r), where k -- ½ < vjvj >. The isotropic portion of the two-point

correlation can be written as

r_rj f, 1 t
(1) Rij(r) = --_r + (f + _rf )Sij

where f = f(r) the longitudinal correlation is defined:

(2) < Vl(O)Vl(r ) )=< viv 1 ) f(r) = 2-_f(r)= _R11,

von Karman and Howarth [17], Batchelor [18], Monin and Yaglom [16]. Attention will be restricted to the

isotropic component of the longitudinal two-point correlation correlation. The correlation function, f(r),

has the following properties

f(0) = 1

f'(0) = 0

f"(0) = -1/A 2

f(oo) -_ 0.

The function is also even: f2"+1(0) = 0. It is typical to work in nondimensional variables: one rescalcs

according to x = r/e where £ is the integral length scale of the turbulence. The integral length scale is

defined as _k£ = fo < VlV_ > dr and thus

(3) f(x) dx = 1.

The curvature at the origin, in nondimensional Coordinates, is then specified as f"(x = O) = -g2/A2. The

Taylor microscale, )_, can be shown to be equal to the spectraUy weighted length scale

1 f n2E(n)dn

(4) - f

The Taylor microscale is an intermediate length scale; smaller then the outer integral length scale and larger

than the inner Kolmogorov scale, Tennekcs and Lumley [19].

The turbulent Reynolds number is defined as Rt -- u_£/v where uc is a characteristic fluctuating velocity,

u_ = ,5k/:2_1/2. The Kolmogorov scaling E ----aku_/g, [1911 is used to eliminate the length scale: thus Rt --

c_k_k2/(ve). Note that this is the traditional Reynolds number, Tennekes and Lumley [19]; the Reynolds

number definition used in contemporary DNS is a factor 9 larger and does not realistically reflect the relative

magnitude of inertial to viscous forces. The isotropic portion of the dissipation tensor, Eij = v < Ui,k uj,k >,

can be written in terms of the two-point correlation tensor:

(5) e_._= 2e =. < ui,ku_,k>= 2--kuR3J'kk3lo= -_ku15f"(O) = _kul5/)_2,

Batchelor [15]. The curvature, )_, has been related to the spectral cascade rate of energy, e :

(6) = 5k./ 2,



Tennekes and Lumley [19]. The cascade rate, ¢, is a measure of one of the most fundamental characteristics

of turbulence its nonlinear decorrelating effect; any model for a two-point correlation must be dependent

on this quantity. The curvature, ),, is also related to the Reynolds number. The Reynolds number, Rt =

-_k2/(v¢), with ak = 1 can be used to eliminate e. One finds, Tennekes and Lumley [19], that

1 R
(7) 2 = , = f"(z = o).

The dependence of the curvature at origin to turbulent Reynolds number needs to be embedded in any

empirical expression of the correlation function. Moreover any model for the two-point correlation, f =

f(x; Rt), must have

(s) f(x; R,) dz = 1,

a first integral independent of Reynolds number (or, equivalently, viscosity).

An additional constraint for any model of f can bc found from the problem of the final period of the

decay. In the final period of the decay, first treated by von Karman and Howarth [17], (see also [18], [7]),

the two-point correlation is found to be a Gaussian: as R_ --_ 0

r 2

(9) f _, e ,-,.

Note that in the Linear decay problem 8vt = )_2 _ 1/Rt and 8vt --4 ao corresponds to Rt ---+O. This function

has the appropriate properties at the origin: it is an even (differentiable) function with finite curvature

specified by the Reynolds number. The Gaussian, however, cannot satisfy f_ f(x) dx = 1 in a way that is

independent of Reynolds number.

It is empirically observed that the decay of the correlation function in high Reynolds number turbulence

can be usefully approximated as f _ e -x, Hinze [7], Frenkiel [8], Townsend [10]. A similar behavior for the

two-time correlation is discussed in Pope [20]. In as much as e -Ixl is an easily integrable function it is used

in estimates of integrals of the two-point correlation. It does not have any of the required properties near the

origin. This, nonetheless, has not stopped its application as an estimate in a number of situations, [2], [7],

[10]. Its application being understood to be limited to issues related to larger scales of the motion, [20]. The

form e -Ixl cannot, of course, be used in any functionals that feature a dependence on higher order derivatives

which are very large near the origin and cannot be represented by e-lXl, which is non-differentiablc at the

origin.

3. Mathematical representation. Many of the empirical functions chosen to approximate the two-

point correlation in the estimation of functionals of f are single parameter curves like e -_fxl or e-ax2 which

while satisfying one constraint do not reflect the two-length scale nature the correlation fimction. For

example, near the origin, f .-_ e -I_T has positive curvature whilc the real correlation function has negative

curvature. The use of f .-_ e _2 which has proper sign for the curvature will not have the proper magnitude

of curvature at the origin and produce, as is required, a viscosity or Reynolds number independent integral

length scale. Furthermore f ._ e -"x2 is inconsistent with the experimentally the observed exponential decay,

e -_lxl, [8]. Yet the choice f ,_ e -I_1 while a useful approximation to the experimental data, Frenkiel [8],

Townsend [10], has finite (discontinuous) slope at the origin and is an odd function. In addition the positive

curvature of f .-_ e -_ at the origin which is unacceptably inconsistent with the dissipative nature of the

small scales. Any single parameter two-point correlation model cannot capture both of the length scale

properties of a turbulence correlation: the integral length scale, g, and the Taylor microscale, ),.



A simple two parameter expression for fix; R_) in terms of elementary functions satisfying the )_ and g

properties is now considered. The properties that any model for the two-point correlation must satisfy are:

• The two-point function has the properties: f(0) = 1, f'(0) = 0, f(oo) _ 0 and f2n+l(0) --- 0.

• The curvature at the origin is specified f'(0) = -1/A 2.

• Its outer length scale is specified by the normalization fo f(x)dx = 1.
r2

• It satisfies the exact result for the low Reynolds number limit, f ,_ e-_.

• It has, as is observed for large Reynolds number, an exponential decay for large x, f ,,_ e -x.

We are now in the position of proposing a function that has all these properties:

z 2

(10) f(x;e,b) = e (.2+b2_2)112.

The function has two scale parameters, e and b, that will be used to satisfy the two length scales constraints.

The two asymptotic forms of f, in as much as they highlight the two scale parameters, are worth considering.

For small x

__ _ __
(11) x--* 0, f ,_ e • (1+b2®2/,2))1/2 __, e

For a high Reynolds number turbulence, the quantity _, will be seen to be a small parameter: e ,_ 1/Rt

number. The small parameter, e, forms a boundary layer in the vicinity of the origin, x <:< e 2, and the

function has the required large and positive curvature. For low Reynolds number, e --_ 1 and the Gaussian

behavior of the von Karman and Howarth result is obtained. For large x the function is written as

1

,_ (l+_21(b2z2))l12 4---4 e --_.(12) x -_ oc, f e -_

The values of the two scale parameters are now related to quantities describing the turbulence.

It was shown above that the curvature of the correlation function at the origin must satisfies f'(0) =

f'(0) -- -72 = -_Rt and the small parameter is determined by the

15 1

(13) _ = -2- R---_"

The two-point correlation also satisfies the normalization condition,

(14) b) = b) = 1

which will serve to specify b in terms of Rt in a way that I1 is independent of Rt. The integral I1 is not

tractable but an asymptotic analysis produces simple analytical results.

The integral I1 is an example of integral that has local and global contributions. The usual Laplace

method of evaluating such integrals with large parameters is not applicable, however, the boundary layer of

the expression for f(x; R_) can be exploited. Near origin for x < e there is a boundary layer whose width

scales with 1/Rt. In the boundary layer region f does not change appreciably and the local contribution

to the integral I1 scales with the width of the region, of O(e). The global contribution to I1 occurs over a

region O(b) for x > e. In this region, f ,,_ e -_ and f_ e dx = 1 and the global contribution is O(1). With

these ideas in mind the the interval of integration is subdivided into local and global regions in which the

two-point function has, respectively, the near and far field behavior given by (11) and (12):

_ c,o

(15) Ile + Ilcc --- _ f(x)dx + _ f(x)dx= 1.

_sRt. Differentiating f twice,

turbulent Reynolds number:



Here5 satisfies e << 5 << b << oc but is otherwise arbitrary. The fact of its arbitrariness can be used to

validate the success of the asymptotic evaluation of the two integrals I1_ and I1_; the combination I1¢ + Ii_

must be independent of 5. As the contribution to each integral is proportional to the their intervals one

might expect expect I1_ _ 0(5) and I1_¢ _ O(b); since _ << 1 the major contribution to I1 is from I1_

and one might expect b ,-, 1 to leading order. The local and global contributions to the integral I1 are now

evaluated.

Inner integral. For the inner region the change of variable x = e, is made. A Taylor series expansion

for the exponential, since e << 1, is used to produce the following expression valid for x ,,_ O(e),

(16) f0--e ('+°n2)) 1/2 _ 1 - e

where 0 <, < 5/e. The integral I1_ is rewritten

_2

+ °(e2)

Ii,=ej0 [1 - e(1-[_b2_2)1/2 -{- O@2)]d?_

= 6 - 2 b2 e2 + 1)1/2 + _5 ln[ V + e + 1)1/2] nt- ....
(17)

Re-expressing the terms as a function of _ and realizing that both e << 1 and _ << 1 and, using the Taylor

series expansions for the quadratic and the logarithm, one obtains

1 55 . 1 e2 1 e2(18) /le = 6 -_-(1 + _-_) + _ In[ ] q- O(e4).

Outer integral. For large x the two-point function is rewritten

] e 2 3x: ¢2 _2

= (l-}'¢2/(b2z2))I/2 e = e(19) f e -_ = --_[1--_b-_ + a(b--_)2 -k '"l --_ e_ b-ff-£ e- sb _,b-g-_ r,

e 2

where we have used the binomial expansion since x > (f and therefore _ << 1. The last two factors are

expanded using the Taylor series for the exponential. To O(e 2) one obtains

(20) Ilc_ = e bdz -k- _-_ z

The first integral is I1_ = be-[ and is to be expanded in powers of _ since _ << 1. The second integral is
6.

the exponential integral. The exponential integral is also expanded in powers of g.

1 e2 j_oo e-_ dx -- 1 e2 5 5 1 52 1 I_ 3(21) 2 b2 -7- 2 b2 [ -_ - Zn(_) + b 4 b2 + i-8_"" ]

where '7 _ 0.57721 is Euler's constant. The integral becomes

(22) Iloc = b [1 - _ + _( )2 + ... ] + _ [__, _ tn( )+ -_ - -_b-5 + 1-_b-g... ]

Using the expressions (18) and (22) in I1_ + Ilo¢ = 1 produces, to leading order,

1 e2 1 ln(2 b2 )__(23) b=l+  b 2b ].

Note that the expression does not depend on the arbitrary scale factor 5; this is a vindication of the procedure

and can be used to check for errors. The nonlinear expression for b is solved iteratively. Only one iteration

is required. Setting b = 1 in the right hand side produces

1 1_ 1 ln(4Rt)].(24) b = l+g( )213, 2



Toaverygoodapproximationb _ 1 for high Reynolds (as low as R_ > 100). The expression for the two-point

correlation, with b _ 1, becomes

-- R_ x2

(25) f(x; Rt) ---- e <c_>2+R__2_12.

This, (25), is the expression for a kinematically consistent two-point correlation whose curvature at the

origin is given by the Taylor microscale. The small and large x limits are, respectivcly f -* e -_ R'_2 and

f --_ e -_. The asymptotic evaluation of/1 was used to obtain b = b(R_) such that I1 was independent

of Rt; b _ 1 was indicated to be a good approximation. The asymptotic evaluation of the I1 integral

was described in some detail: it is an illustration of similar asymptotic procedures needed to evaluate the

functionals described in Batchelor [1], Proudman [4], Ribner [5], LiUey [6], Ristorcelli [3].

The fact that b _ 1 is a result of the fact that I1_ "_ ¢9(e) <:< Ilo_. This will only bc the case for

functionals that do not include higher derivatives. Higher order derivatives and their products will scales

with R_, n > 0, near the origin and the fact that the interval scales with Rt -1 will mean that the local

contribution will be larger than the global contribution, I_ >> Ioo.

4. Discussion. The kinematic two-point correlation has been obtained with the idea of applying it to

functionals calculated for non-ideal flow situations in which a Kolmogorov spectrum is not expected. To

this end we have not incorporated the r 2/3 scaling, [15], associated with an ideal Kolmogorov turbulence.

It is, at the cxpcnsc of convenience and simplicity, possible to incorporate the Kolmogorov behavior, lit

involves another free parameter and a length scale.] Due to the complicated expression needed to build

in Kolmogorov behavior, the fact that information necessary to specify the additional length scale can not

be obtained from turbulence closures, and the nonideal nature of practical flows, consistency with the r 2/3

scaling has been foregone.

The result, (25), is more general than if we required consistency with the Kolmogorov behavior. It

becomes an interesting kinematically consistent expression for any random velocity field with distinguished

inner and outer ]integral and dissipation] scales. It is straightforward to produce similar expressions for

either Eulerian or Lagrangian two-time correlations, [7]. In a Langevin approaches to turbulence, Pope [20],

two-time correlations of the form p(s) = e -8/_" are used; higher order derivatives are again, unphysically

discontinuous at the origin. The model, e-8/T, is the correlation function of the Orhnstein-Uhlenbeck process

(colored noise) with non-differentiable velocity increments for which Pope [20] has a nice discussion relevant

to the turbulence problem. Should statistics to which the differentiability property or the low Reynolds

number limit be important than an expression of the form (25) is straightforward. The boundary layer at

the origin is a temporal layer and the same procedure with two relevant time scales, the Lagrangian integral

time scale and the Lagrangian dissipation time scale (Hinze [7]), is applicable.

5. Closure. A simple kinematically consistent two-parameter expression for the two-point spatial cor-

relation function has been obtained. The model two-point expression has curvature at the origin given by

the Taylor microscaie and satisfies the integral constraint associated with a Reynolds number independent

integral length scale. In as much as the curvature at the origin is related to the dissipation the model

constructed incorporates one of the fundamental quantities characterizing a stationary turbulence, e. As

the curvature at the origin can also be expressed in terms of the turbulent Reynolds number, a measure of

nonlinearity, the model expression for the two-point correlation includes the decorrelating effects associated

with the [nonlinear] cascade.

The expression is meant to be used to providc estimates, using an asymptotic procedure described,

of functionals used in single-point moment models. The expression is purely kinematic; no appeal to the



dynamicaltwo-pointequationshasbeenmade.Anydcvclopmentbasedonthedynamicaltwo-pointequations
for a generalanisotropicinhomogeneousturbulcntflowundergoingstrainis prohibitivelycomplicatedand
unclosed.In asmuchastheshapeof thetwo-pointcorrelationis insensitiveto flowsituation,Townsend
[10],akinematicallyconsistentexpressionwill capturethetwo-lengthscalefeaturesseenisotropicFrenkiel
[8],strainedRogers[21],andboundarylayerFrenkielandKlebanoff[13].Theexpressionisconsistentwith
severalkinematicpropertiesincludingdifferentiabilityat the originandallowsoneto expresstwo-point
behaviorin tcrmsof twoquantitiescarriedin a typicalmomentclosurescheme,thekineticenergy,k, and

dissipation, e, of turbulence.
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